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Trapped modes in the linearized water-wave problem are free oscillations of an
unbounded fluid with a free surface that have finite energy. It is known that such
modes may be supported by particular fixed structures, and also by certain freely
floating structures in which case there is, in general, a coupled motion of the fluid and
structure; these two types of mode are referred to respectively as sloshing and motion
trapped modes, and the corresponding structures are known as sloshing and motion
trapping structures. Here a trapped mode is described that shares characteristics with
both sloshing and motion modes. These ‘passive trapped modes’ are such that the net
force on the structure exerted by the fluid oscillation is zero and so, in the absence
of any forcing, the structure does not move even when it is allowed to float freely.
In the paper, methods are given for the construction of passive trapping structures, a
mechanism for exciting the modes is outlined using frequency-domain analysis, and
the existence of the passive trapped modes is confirmed by numerical time-domain
simulations of the excitation process.

1. Introduction
Investigations into the uniqueness of solutions to linearized inviscid water-wave

problems have resulted in the discovery of trapped-mode oscillations. A trapped
mode is a free oscillation of an unbounded fluid with a free surface that has finite
energy, does not radiate waves to infinity and persists for all time in the absence of
viscosity. Trapped modes occur at isolated frequencies and can be supported only
by special trapping structures. Two types of trapped mode have previously been
identified: sloshing and motion trapped modes. A sloshing trapped mode is a free
oscillation of the fluid around a particular ‘fixed’ structure referred to as a sloshing
trapping structure. On the other hand, a motion trapped mode is a free oscillation
of the fluid around a floating structure that is free to move and, in general, involves
a coupled motion of the fluid and structure – such a structure is termed a motion
trapping structure. McIver (1996) proved the existence of sloshing trapped modes
while investigating uniqueness in scattering and radiation problems, while McIver &
McIver (2006) demonstrated the existence of motion trapped modes in the coupled
problem. In the frequency domain, the mathematical significance of a trapped mode
is that, if a structure does not support a trapped mode at a particular frequency of
oscillation, then the solution to a corresponding water-wave problem at that frequency
is unique.
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A trapped-mode potential is a non-trivial solution of the homogeneous form of a
frequency-domain water-wave problem obtained in the absence of any forcing. In the
case of scattering and radiation problems this implies that the trapped-mode potential
satisfies a homogeneous Neumann condition on the structure’s surface, whereas for
a coupled wave-structure motion problem the boundary condition on the structure
contains both the potential and the structure’s velocity but the equation of motion
contains no forcing term. As demonstrated by McIver (1997), one consequence of
the homogeneous Neumann condition for the particular class of sloshing trapped
modes discovered by McIver (1996) is that the modes are orthogonal to any incident
waves, and hence these trapped modes cannot be excited in a scattering problem in
the time or frequency domains. However, the existence of a sloshing trapped mode
of the type discovered by McIver (1996) implies the non-existence of the solution to
a radiation problem at the trapped-mode frequency and this corresponds to a pole
in the frequency-domain radiation potential at that frequency. As a consequence the
sloshing trapped modes of McIver (1996) can be excited in the time-domain by an
appropriate forced oscillation of a trapping structure (McIver, McIver & Zhang 2003).
In contrast, McIver & McIver (2006) show that the existence of a motion trapped
mode in the water-wave problem for a freely floating structure results in both the
scattering and radiation potentials being well behaved at the trapped-mode frequency.
Thus, motion trapped modes cannot be excited in the time domain either by the forced
motion of the structure or, for a structure initially at rest in its equilibrium position,
by incident waves. However, excitation of the motion trapped mode can be achieved
by giving the structure a non-zero initial displacement or velocity. From a numerical
perspective, the existence of the sloshing trapped modes discussed above has the
consequence that it is difficult to accurately compute the added mass and damping
coefficients near the trapped-mode frequency where these hydrodynamic coefficients
are singular. However, for motion trapped modes all of the hydrodynamic coefficients
are well behaved at the trapped mode frequency.

It was previously thought that sloshing trapped modes cannot persist when the
trapping structure is allowed to float freely and respond to the hydrodynamic forces
that act upon it. In general, a sloshing trapped mode exerts a non-zero hydrodynamic
force on the structure which excites a motion of the structure that radiates energy
to infinity, and hence damps the trapped mode. This is true for the particular
class of sloshing trapping structures discovered by McIver (2006) whose properties
are discussed above, but Motygin & Kuznetsov (1998) constructed two-dimensional
sloshing trapping structures whose corresponding trapped modes exert no net force
on the structure (although, perhaps, this was not recognized at the time). Such
structures can still support the trapped modes when allowed to float freely as the
fluid oscillation of the mode excites no motion of the structure. These last structures
may be considered to be both sloshing and motion trapping structures and, henceforth,
they will be referred to as passive trapping structures and the corresponding persistent
oscillations as passive trapped modes. In this paper set notation is used to distinguish
between the three classes of trapped modes. Let S be the set of all possible sloshing
trapped modes and let M be the set of all possible motion trapped modes; the set
of passive trapped modes P = S ∩ M. The original class of sloshing trapping modes
investigated by McIver (1996) is in the set S\M.

The purpose of the present work is to investigate the conditions required for
the existence of passive trapped modes in two- and three-dimensional water-wave
problems involving structures constrained to be free to move in the heave mode
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only, and to confirm the existence of such modes using time-domain simulations.
The hydrodynamic properties of the trapping structures and time-domain excitation
methods for the passive modes will also be discussed. The two-dimensional passive
trapping structures are constructed by the method of Motygin & Kuznetsov (1998)
and this is extended to three dimensions using ring singularities related to those used
by McIver & McIver (1997); both methods have their origins in the inverse procedure
used by Kyozuka & Yoshida (1981) to obtain wave-free oscillating structures. In the
inverse procedure a potential is constructed that satisfies all the conditions of the
problem with the exception of the boundary condition on the structure, and then
appropriate streamlines that may be used as the surface of a structure are sought.
Trapped modes that exert no net vertical hydrodynamic force on the corresponding
structure may be obtained by using a specific arrangement of wave dipoles in the
construction procedure. For example, for two-dimensional motion in water of infinite
depth it is shown here that there is no force on the structure provided that the
potential used in the inverse method decays faster than a dipole at infinity. An
appropriate potential consists of a pair of horizontal wave dipoles in the free surface
positioned to eliminate waves at infinity, and with opposite orientation to ensure that
the dipole coefficient at infinity is zero.

A structure that supports a passive trapped mode at a particular frequency in a
single mode of oscillation will not experience a net force nor move as a result of
the persistent trapped mode oscillations of the surrounding fluid and consequently,
the excitation methods used previously for sloshing trapped modes and motion
trapped modes in the classes S\P and M\P, respectively, are ineffective. However,
an alternative excitation method in which the fluid is given an oscillatory pressure
forcing on the free surface (McIver 1997) does prove effective. This is demonstrated
analytically by using Green’s theorem to show that the frequency-domain solution
of the ‘pressure potential’ (the potential satisfying the freely floating body equations
while undergoing the free-surface pressure forcing) does not exist at the trapped mode
frequency. Another method for excitation of a passive trapped mode is the imposition
of an initial free-surface elevation on the fluid surrounding the structure. However, we
choose to use a pressure forcing here as a straightforward frequency-domain analysis
readily yields both a necessary condition for excitation and an asymptotic result in
time that provides the opportunity for comparisons with computations in the time
domain.

In this paper the motion of a structure in heave only is considered in both two- and
three-dimensional fluid domains. The problem of a moored floating structure free to
respond to incident waves is formulated in § 2. The zero-force condition for a passive
trapped mode is introduced in the context of the conditions for a motion trapping
structure in § 3. The construction of the passive trapping structures in two and three
dimensions is demonstrated in § 4, and in § 5 excitation methods are described and
time domain simulations are presented to confirm the existence and illustrate the
properties of passive trapped modes.

2. Formulation
Consider a moored surface-piercing structure, constrained to move in heave only,

that is floating in an inviscid and incompressible fluid that may be of infinite or finite
depth. The fluid is also of infinite extent in all horizontal directions and Cartesian
coordinates (x, y, z) are chosen with the z-axis directed vertically upwards from



Passive trapped modes in the water-wave problem 459

the mean free surface. In the two-dimensional problems considered, the structure is
assumed to extend indefinitely in the y direction so that attention is restricted to the
x–z plane only. The vertical displacement and velocity of the structure are denoted
by Z(t) and Ż(t) respectively, and the wetted surface of the structure in both two and
three dimensions is denoted by Γ .

For a structure moored by an arrangement of linear springs and dampers the
equation describing the motion of the structure is

MZ̈(t) = −ρ

∫
Γ

∂Φ

∂t
nz dS −

[
(ρgW + κ)Z(t) + γ Ż(t)

]
, (2.1)

where M is the mass of the structure, W the water-plane area, ρ the density of
the water and g the acceleration due to gravity. The constants κ and γ describe
respectively the properties of the springs and dampers in the mooring system. The
z-component of the inward normal to the structure is denoted nz and Φ(x, z, t) is
the time-domain velocity potential describing the fluid motion, where x denotes the
coordinates in the horizontal plane. The motion is subject to the initial conditions

Φ(x, z, 0) = 0,
∂Φ

∂t
(x, z, 0) = 0, (2.2)

so that the fluid is initially at rest (in the vicinity of the structure at least), and for all
time

∇Φ → 0 as |x| → ∞. (2.3)

The initial displacement Z(0) and velocity Ż(0) of the structure must also be
prescribed.

The frequency-domain potential φ(x, z, ω) is obtained using the Fourier transform
and, for fluid that is at rest for t < 0,

φ(x, z, ω) =

∫ ∞

0

Φ(x, z, t) eiωt dt, Imω > 0. (2.4)

The condition on the imaginary part of ω is required as in the fluid motions to be
considered here Φ(x, z, t) may not approach zero as t → ∞. More specifically, in some
circumstances a trapped mode is excited so that Φ(x, z, t) may represent a bounded
oscillation as t → ∞ or, in a resonant situation, Φ(x, z, t) may grow algebraically
as t → ∞. The potential φ(x, z, ω), as defined in (2.4), can be analytically continued
on to the real ω axis (with the exception of any singular points that might arise,
for example, from the existence of a trapped mode). It satisfies the usual frequency-
domain equations governing the fluid motion which include Laplace’s equation, the
free-surface condition, the boundary condition on the structure, and an appropriate
radiation condition. Fourier transformation of (2.1) and continuation on to the real
axis gives the corresponding frequency-domain equation of motion

[
ρgW + κ − iωγ − ω2M

]
v(ω) = −iωρ

∫
Γ

[iωφ(x, z, ω)

+ Φ(x, z, 0+)] nz dS − (ρgW + κ)Z(0) − iωMŻ(0), (2.5)

where v(ω) is the Fourier transform of the velocity Ż(t). The inversion formula for
the potential is

Φ(x, z, t) =
1

2π

∫ ∞

−∞
	 φ(x, z, ω) e−iωt dω =

1

π
Re

∫ ∞

0

	 φ(x, z, ω) e−iωt dω, (2.6)
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where the path of integration passes over any poles on the positive real ω axis, and this
is used later to obtain an asymptotic expression for the fluid motion in the long-time
limit. The reduction to a semi-infinite interval follows from φ(x, z, −ω) =φ(x, z, ω),
ω ∈ �, and consideration of the poles.

3. Conditions for the existence of passive trapped modes
Trapped modes were first observed in uniqueness investigations into water-wave

problems and it is in this context that the conditions for the existence of passive
trapped modes are introduced. Consider two solutions {φ1, v1}, {φ2, v2} to the
frequency-domain water-wave problem. The difference potential φ =φ1 − φ2 and
velocity V = v1 −v2 satisfy a homogeneous water-wave problem. That is, the potential
satisfies Laplace’s equation

∇2φ = 0 (3.1)

within the fluid, the boundary condition

∂φ

∂z
=

ω2

g
φ on F, (3.2)

the free surface and the no-flow boundary condition on the surface of the structure

∂φ

∂n
= V nz on Γ, (3.3)

where V satisfies the homogeneous form of the equation of motion (2.5), that is,

[ρgW + κ − ω2{M + iγ /ω}]V (ω) = ω2ρ

∫
Γ

φ nz dS (3.4)

(the terms involving the initial conditions cancel as they are identical for both
solutions). The right-hand side of (3.4) is proportional to the hydrodynamic force on
the structure due to the fluid oscillations. For a moored structure, the possibility of
finite-energy motions that satisfy (3.3) and (3.4) with non-zero φ and V has been
known for some time and there have been a number of recent developments (Evans
& Porter 2007; Newman 2008). A necessary condition for the construction of such
modes is that the damping constant γ is zero. The existence of non-trivial solutions
with finite energy of (3.1)–(3.4) for structures without moorings, and with V �= 0, has
been established using the inverse method by McIver & McIver (2006, 2007), and
solutions for half-immersed circular cylinders have been found by Porter & Evans
(2009).

In addition to the motion trapped modes for which both the potential φ and
the velocity V are non-zero, there is the possibility that finite-energy solutions to
(3.1)–(3.4) exist with φ �= 0 but with V = 0 provided∫

Γ

φ nz dS = 0 (3.5)

(in which case it is permissible for γ to be non-zero). A solution of this type
corresponds to a fluid motion that satisfies the homogeneous boundary condition for
sloshing trapped modes

∂φ

∂n
= 0 on Γ, (3.6)

but for which the structure is able to float freely as the net hydrodynamic force on
the structure due to the fluid motion is zero. Structures that support modes of this
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type will be here referred to as passive trapping structures. Insight into how such
structures might be found can be gained from examining the conditions under which
(3.5) may be satisfied. For the particular case of two-dimensional motions in infinite
depth, any potential that corresponds to a finite-energy motion and that is wave free
at infinity (and hence a trapped-mode potential φ0(x, z)) satisfies

φ0 =
D cos θ

R
+ o

(
R−1

)
as R → ∞, (3.7)

where R =
√

x2 + z2 and θ are polar coordinates with θ measured from the downward
vertical (see Ursell 1968, and the papers referenced therein). The constant D is referred
to here as the dipole coefficient and, in general, to leading order the trapped mode
is dipole-like at infinity. The trapped-mode potential also satisfies the homogeneous
Neumann condition (3.6) on the structure and condition (3.2) on the free surface.
Consider the fluid domain D bounded by the free-surface, the surface Γ of the
structure, and an enclosing semicircle S∞ at infinity in z < 0. An application of
Green’s theorem over D to the trapped-mode potential φ0 and u0 = z + g/ω2

0, where
ω0 is the trapped-mode frequency, gives∫

Γ

φ0nz dS = πD (3.8)

(note that this result requires ∂φ0/∂n= 0 on Γ ). Thus, (3.5) is satisfied if and only
if D = 0, that is the coefficient of the dipole in the far-field expansion of φ0 is zero.
When the velocity V =0 the equations for φ0 are the same as those for a sloshing
trapped mode, and it so happens that such modes with D = 0 have been constructed
previously by Motygin & Kuznetsov (1998).

For two-dimensional motion in fluid of constant finite depth h, Green’s theorem
yields ∫

Γ

φ0nz dS = −
∫ ∞

−∞
φ0|z=−h dx (3.9)

so that a necessary condition for the existence of a passive trapped mode at the
frequency ω0 is ∫ ∞

−∞
φ0|z=−h dx = 0. (3.10)

In three dimensions, the derivations of the necessary conditions for the existence of
passive trapped modes in a fluid infinite or constant finite depth h are almost identical
to those for two dimensions. For a vertically axisymmetric three-dimensional structure
in a fluid of infinite depth, any potential that is wave free at infinity satisfies (see
Hulme 1982)

φ0 =
D cos θ

R2
+ o

(
R−2

)
as R → ∞, (3.11)

where in this case R =
√

x2 + y2 + z2 and θ is measured from the downward vertical.
The application of Green’s theorem to φ0 and u0 = z + g/ω2

0 on the three-dimensional
fluid domain bounded by the free surface, the surface of the structure and an enclosing
hemisphere in the lower half of the plane gives∫

Γ

φ0nz dS = 2πD (3.12)

and, again, to obtain a passive trapped mode the dipole coefficient D for the potential
must be zero. For a fluid of constant finite depth, the existence condition is the
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three-dimensional equivalent of the condition (3.10) for two dimensions, i.e.∫ ∞

0

φ0|z=−h r dr = 0, (3.13)

where r =
√

x2 + y2 is a horizontal polar coordinate.

4. Construction of passive trapping structures
4.1. Two-dimensional structures

Passive trapping structures are constructed here using an inverse procedure similar
to that employed by McIver (1996) to construct the original class of sloshing
trapping structures in the set S\M. In that paper a potential satisfying the wave-free
condition at infinity is constructed from two free-surface sources and the streamlines
isolating the singularities from infinity are interpreted as the body contours. Thus, the
singularities of the potential are not on the boundary of the fluid domain because the
source points are within the bodies. For two-dimensional passive trapping structures
in water of infinite depth the construction uses a pair of horizontal wave dipoles, as
in Motygin & Kuznetsov (1998), and the trapped-mode potential is (correcting a sign)

φ0(x, z) =
1

K

[
x − ξ

(x − ξ )2 + z2
− x + ξ

(x + ξ )2 + z2

]
+

∫ ∞

0

euz sin u(x − ξ ) − sin u(x + ξ )

u − K
du.

(4.1)

Here K =ω2
0/g is the infinite-depth wavenumber corresponding to a trapped mode of

frequency ω0 and, to eliminate waves at infinity the dipoles are located symmetrically
about the origin at (±ξ, 0) where Kξ = nπ with n ∈ �+. Some properties of this
potential are discussed in detail by Kuznetsov, Maz’ya & Vainberg (2002, section
4.2.2.3). A straightforward asymptotic analysis (see Appendix B) shows that this
combination of equal-strength dipoles has a vanishing far-field dipole coefficient
which, as explained in the previous section, is required for a passive trapped mode.
The corresponding stream function, needed for the location of the streamlines, is

ψ0(x, z) = − 1

K

[
z

(x − ξ )2 + z2
− z

(x + ξ )2 + z2

]

+

∫ ∞

0

euz cos u(x − ξ ) − cos u(x + ξ )

u − K
du, (4.2)

where the arbitrary constant of integration has been chosen to ensure decay to zero at
infinity. In the inverse procedure the stream function ψ0 is used to construct the trap-
ping structures for a particular frequency ω0 by choosing values of δ in the equation
ψ0(x, z; K) = δ and some typical results are shown in figure 1 for the case Kξ = π.

The same approach can be adopted for a finite-depth fluid domain and the
appropriate combination of horizontal wave dipoles gives a trapped-mode potential

φ0(x, z) = 2

∫ ∞

0

u(sin u(x − ξ ) − sin u(x + ξ )) euz(1 + e−2u(z+h))

u − K − (u + K) e−2uh
du (4.3)

(the potential for a single dipole can be obtained, after a little calculation, from
equations (B 56) and (B 57) of Linton & McIver 2001) and a corresponding stream
function

ψ0(x, z) = 2

∫ ∞

0

u(cos u(x − ξ ) − cos u(x + ξ )) euz(1 − e−2u(z+h))

u − K − (u + K) e−2uh
du. (4.4)
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Figure 1. The right-hand element of passive trapping structures obtained from the stream
function (4.2) with ξ = π, K = 1. Each streamline is marked with the corresponding value of δ.

To eliminate waves at infinity it is required that the finite-depth wavenumber k satisfies
kξ = nπ, n ∈ �+, and then the corresponding frequency parameter K = k tanh kh. The
geometries of the resulting trapping structures are qualitatively similar to those shown
in figure 1. The excitation of passive trapped modes in a fluid of constant finite depth
will be demonstrated later in the paper and the finite-depth passive trapping structures
are used in these simulations. The condition (3.10) for a zero hydrodynamic force on
the passive trapping structure in finite depth is verified in Appendix C.

Passive trapping structures support both sloshing and motion trapping modes
because (3.3), (3.4) and (3.6) are all satisfied simultaneously by the (non-trivial)
potential φ0. Despite the fact that the structures also support sloshing trapped modes,
for passive trapping structures both the radiation and scattering potentials exist
at the trapped-mode frequency. Thus, in particular, the added mass and damping
coefficient do not exhibit the singular behaviour at the trapped-mode frequency
of the trapping structures corresponding to trapped modes in S\M. To obtain
numerical verification of these properties, a standard boundary-element method
(BEM) frequency-domain code was used to compute the non-dimensional added
mass µ and damping ν for a passive and sloshing trapping structure, within the
classes P and S\M respectively, around the trapped-mode wavenumber K = 1. (The
particular passive trapping structure used in these calculations corresponds to the
streamline δ = 1.5 shown in figure 1.) For the passive trapping structure, the errors
inherent in a numerical approximation manifest themselves in very localized variations
in µ and ν around the trapped-mode frequency as may be seen in figure 2; these are
present because the discretization of the trapping structure is actually a near-trapping
structure with the corresponding radiation potential possessing a complex resonance
located very close to the real-ω axis. As the number of panels np is increased the
peaks reduce in width, increase in height, and converge on K =1. On the other hand,
the singular behaviour of the added mass coefficient for the S\M trapping structure
shown in figure 3 is much more significant than that for the passive trapping structure.
The added mass tends to positive and negative infinity as K approaches the asymptote
K = 1 from the left and the right respectively with the asymptotic behaviour occurring
over a much larger range of K values than in the passive trapping structure case.
Furthermore, the damping coefficient is close to zero for most of the range of K

over which the added mass behaves in a singular manner; the passive trapping
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Figure 2. Numerical calculations of the non-dimensional added mass µ (——–) and damping
ν (– – –) as a function of the frequency parameter K for the structure δ = 1.5 (see figure 1)
discretized with 402 panels.
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Figure 3. (Colour online) Numerical calculations of the non-dimensional added mass µ
(———) and damping ν (– – –) around the trapped-mode frequency corresponding to K = 1
for a sloshing trapping structure of the class S\M.

structure has finite non-zero values for µ and ν near K = 1. These features are robust
under changes in the number of panels used. Therefore, although passive trapped
modes obey the same equations as sloshing trapped modes in the class S\M, the
hydrodynamic properties of the corresponding structures are significantly different.

4.2. Three-dimensional structures

The three-dimensional passive trapping structures are assumed to have a vertical axis
of symmetry and are constructed from ring-dipole potentials. Previously, McIver &
McIver (1997) used an axisymmetric ring-source potential

φs(r, z) = 4π2iKc eKz J0(Kr<)H0(Kr>)

+ 8c

∫ ∞

0

(u cos uz + K sin uz)I0(ur<)K0(ur>)
u

u2 + K2
du (4.5)
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to generate vertically axisymmetric sloshing trapping structures in infinite depth, where
J0, I0, K0 and H0 denote standard Bessel, modified Bessel and Hankel functions of
order zero and where r< = min{r, c} and r> = max{r, c}. To eliminate the first term
in (4.5) corresponding to the outgoing radial waves the radius c of the ring source is
chosen to satisfy

J0(Kc) = 0, (4.6)

where K = ω2
0/g and ω0 is the trapped-mode frequency.

To construct passive trapping structures, the potential due to a ring-dipole in the
free-surface is used and again the radius of the ring chosen to eliminate the far-field
waves. The ring-dipole is obtained from (4.5) by differentiation with respect to the ring
radius c (the multiplicative factor c is first removed from (4.5) so that no source-like
terms remain after differentiation); the resulting ring-dipole potential is

φ0(r, z) = −4π2iK2 eKz J0(Kr)H1(Kc)

− 8

∫ ∞

0

(u cos uz + K sin uz) I0(ur)K1(uc)
u2

u2 + K2
du, 0 � r < c, (4.7)

φ0(r, z) = −4π2iK2 eKzJ1(Kc)H0(Kr)

− 8

∫ ∞

0

(u cos uz + K sin uz) I1(uc)K0(ur)
u2

u2 + K2
du, r > c, (4.8)

and to ensure that it is wave-free at infinity the coefficient of H0(Kr) in (4.8) is set to
zero, so that

J1(Kc) = 0. (4.9)

Thus Kc = j1,i where j1,i , i = 1, 2, . . ., are the positive zeros of the Bessel function
of order one arranged in ascending order. To represent a passive trapped mode the
potential must also have a zero dipole coefficient at infinity (see § 3) and this is verified
in Appendix D. The Stokes stream function for the above potential is

ψ0(r, z) = −4π2rK2 e−Ky J1(Kr)Y1(Kc)

− 8r

∫ ∞

0

(u sin uz − K cos uz)I1(ur)K1(uc)
u2

u2 + K2
du, 0 � r < c, (4.10)

ψ0(r, z) = −8r

∫ ∞

0

(u sin uz − K cos uz)I1(uc)K1(ur)
u2

u2 + K2
du, r > c, (4.11)

where the constants of integration are chosen to give ψ → 0 as r → ∞. Plots of
typical stream surfaces for this deep-water ring-dipole stream function are shown in
figure 4 for the ring dipole radius of c = j1,1/K with the infinite-depth wavenumber
chosen to be K =1. The corresponding structure is generated by the rotation of the
contours about the z-axis and therefore the structures are toroidal and enclose a
portion of the free-surface. Numerical calculations (performed with the panel code
WAMIT) of the added mass and damping for one of the structures in figure 4 are
given in figure 5 and, as in the two-dimensional case, there is a very localized lack of
smoothness around the trapped-mode frequency due to numerical errors.

Finite-depth passive trapping structures are constructed in a similar fashion. A
suitable dipole potential is φ0 = ∂(R0/c)/∂c where

R0(r, z; c, 0) = 4πc

∫ ∞

0

u coshu(h + z)

u sinhuh − K cosh uh
J0(ur)J0(uc) du (4.12)
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Figure 4. The trace of passive trapping structures in the r–z plane obtained from the solution
of ψ0(r, z) = δ for c = j1,1/K and with K = 1. Each streamline is marked with the corresponding
value of δ.
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Figure 5. The non-dimensional added mass µ (——–) and damping ν (– – –) as a function
of frequency parameter K for the structure corresponding to the streamline value δ =5.0 in
figure 4 discretized with 2304 panels.

is a finite-depth ring-source potential (Hulme 1983), where K = k tanh kh and k is the
finite-depth wavenumber. With the ring radius chosen to be c = j1,i/k for i = 1, 2, . . .,
the singularity in the denominator of the integrand is cancelled by the zero of the
Bessel function J1(uc) at u = k and the integral representation of the trapped-mode
potential is

φ0(r, z) = −4π

∫ ∞

0

u2 cosh u(h + z)

u sinh uh − K coshuh
J0(ur)J1(uc) du (4.13)

with no radiated wave term present. The corresponding stream function is

ψ0(r, z) = −4πr

∫ ∞

0

u2 sinh u(h + z)

u sinhuh − K cosh uh
J1(ur)J1(uc) du. (4.14)

The stream surfaces that correspond to passive trapping structures are qualitatively
similar to those in the infinite-depth case. The finite-depth passive trapping structures
are used here for the numerical demonstration of the existence of passive trapped
modes. To confirm that the stream function (4.14) corresponds to a passive trapped
mode, the potential (4.12) must satisfy the finite-depth condition (3.13). A numerical
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approximation to the infinite integral can be obtained by replacing the upper limit of
the integral by a large, but finite, radius and values for the integral of the order of
10−6 were obtained for a domain of radius 20h.

5. Excitation of passive trapped modes
5.1. Excitation condition in the frequency domain

If a frequency-domain potential possesses a simple pole at a real frequency ω then
the corresponding time-domain potential describes a persistent oscillation because
the residue at the pole yields a term proportional to e−iωt when the inverse Fourier
transform is evaluated, while a double pole leads to the unbounded growth of
an oscillation in the time domain. Thus, the non-existence of a frequency-domain
potential at a certain real frequency implies that trapped-mode excitation is possible
in a corresponding time-domain problem. For example, the non-existence of a
radiation potential at the trapped-mode frequency in the forced motion problem
involving a sloshing trapping structure of the class S\M means that corresponding
forced motions of the structure will excite the trapped mode (see McIver et. al.
2003 for details). However, for all motion trapping structures (including passive
trapping structures) the radiation potentials are well behaved at the trapped-mode
frequency and the trapped modes cannot be excited by forced motions of the structure.
Excitation of motion trapped modes of the class M\S can be achieved by giving the
structure an initial displacement or velocity because, in general, there is a singularity
in the frequency-domain velocity v(ω). In the absence of moorings, this follows from
the resonance condition

ρgW − ω2 [M + a(ω) + ib(ω)/ω] = 0, (5.1)

which is a necessary condition for the existence of a non-trivial solution for v(ω) of
the homogeneous form of the equation of motion for a floating structure, (A 5) in
Appendix A (see also McIver & McIver 2006). However, for passive trapped modes
there is, in general, no pole in v(ω) on the real ω axis and, consequently, no excitation
can arise from the imposition of an initial displacement or velocity and an alternative
excitation method must be used to obtain a persistent passive mode of oscillation in
the fluid.

Using Green’s theorem, McIver (1997) demonstrates explicitly how the violation of
the existence condition for a frequency-domain potential due to a pressure forcing on
the free surface corresponds to the unbounded growth of a trapped-mode oscillation
in the time domain. A similar approach can be taken for passive trapped modes by
considering a potential due to an oscillatory forcing pressure in the presence of a
freely floating passive trapping structure. In this case, the pressure forcing potential φp

satisfies the boundary condition on the structure (3.3) and the equation of motion (3.4)
as well as a modified free-surface boundary condition

∂φp

∂z
− Kφp = f on F, (5.2)

where f is proportional to the pressure on the free surface. The passive trapped-
mode potential φ0 satisfies the homogeneous free-surface condition, the homogeneous
Neumann condition on the structure surface (3.6), and the zero-force condition (3.5).
Therefore, under the assumption that φp exists, an application of Green’s theorem
to φp and φ0 at the trapped-mode frequency ω =ω0 over the fluid domain yields the
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condition ∫
F

φ0f dS = 0, (5.3)

because the integrals over the structure’s surface Γ , the far-field control surface S∞
and the bottom boundary all vanish. If the condition is not satisfied then φp does
not exist at the trapped-mode frequency and it will be possible to excite a persistent
oscillation corresponding to the trapped mode in the time domain by application of
the corresponding time-dependent forcing pressure. Note that the analysis is valid in
both two and three dimensions.

Many different forcing pressure profiles f can be used to excite passive trapped
modes. Possible choices are f (x) = φ0(x, 0), where x denotes the coordinates in
the horizontal plane, and any forcing function that has the same sign as φ0(x, 0)
everywhere on the free surface. It is also possible to choose a pressure profile such
that the existence condition is satisfied and so that no excitation occurs. For example,
this may be achieved in two dimensions using forcing functions of the form

f (x; ω0) =

{
f0 + f1x + f2x

2, x ∈ FI ,

0, x ∈ FE,
(5.4)

where FI (FE) is the internal (external) free surface. By setting f1 = 0, the forcing
function becomes even and the existence condition then requires

f0 = −f2

∫
FI

φ0(x, 0)x2 dx∫
FI

φ0(x, 0) dx

. (5.5)

In particular, with f2 = 1 this yields a forcing profile f (x, ω0) = f0 + x2 which does
not excite the passive trapped mode. To illustrate the excitation analysis, time-domain
simulations were performed with the various free-surface forcing pressures described
above. These forcing pressures do not need to exist indefinitely and both persistent and
transient forcing pressures are considered; the former results in resonant growth of the
passive trapped oscillation while the latter yields a persistent steady fluid oscillation.
Finally, the oscillatory pressure forcing which satisfies the existence condition is
shown not to excite the passive trapped mode. In all simulations it is assumed that
the structure floats freely so that no mooring forces are present.

5.2. Resonant free-surface pressure forcing

The application of a persistent oscillatory pressure forcing to the free-surface
surrounding a passive trapping structure at the trapped-mode frequency ω0 will
generally result in a fluid oscillation of indefinitely increasing amplitude. This can
be demonstrated by an analysis of the time-domain problem in the long-time limit
which involves the asymptotics of the frequency-domain solution as ω → ω0. The
application of a pressure forcing on the free-surface means that the time-domain
potential Φp describing the response of the fluid to this forcing must satisfy the
dynamic free-surface boundary condition

∂Φp

∂t
+ gη =

P (x, t)

ρ
, (5.6)
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where P is the forcing which is assumed to have the form

P (x, t) =
ρgf (x)

ω0

sinω0t. (5.7)

Provided the fluid motion starts from rest then Fourier transformation yields the
frequency-domain free-surface condition(

K − ∂

∂z

)
φp =

iω

ω2 − ω2
0

f (x) (5.8)

for ω �= ω0, where φp is related to Φp by (2.4). An estimate of the long-time response
of the fluid can be made by an application of the inverse Fourier transform (2.6)
to a Laurent expansion in ω of the frequency-domain potential φp about ω0. This
expansion is determined in a similar way to that used by McIver et. al. (2003,
Appendix A) for a heaving sloshing trapping structure and the leading order term is

φp(x, z, ω) =
igωAφ0(x, z)

(ω2 − ω2
0)

2
+ O(1) as ω → ω0 (5.9)

for a two-dimensional passive trapping structure in finite depth. The amplitude A

is determined by an application of Green’s theorem to φp and φ0 for ω 	 ω0 and
the subsequent substitution of (5.9) for φp . In contrast to the heave problem for a
sloshing trapping structure, where the boundary condition on the structure is not
homogeneous, the inhomogeneous term in the pressure-forcing problem is in the
free-surface boundary condition and it may be shown that

A =

∫
F

φ0(ξ, 0)f (ξ ) dξ∫
F

[φ0(ξ, 0)]2 dξ

. (5.10)

The numerical calculation of A is straightforward as both the numerator and the
denominator can be evaluated from the trapped-mode potential and the pressure
profile f (x). Note that if the condition (5.3) holds then A= 0 and no trapped mode
is excited.

Given that the dominant pole structure of φp is known, the asymptotic form of
Φp for large time can be found by calculating the required residues. The free-surface
elevation η follows from (5.6) to give

η ∼ −Aφ(x, 0)

2ω0

t cos ω0t as t → ∞, (5.11)

and the expected resonant growth in exhibited. Time-domain simulations display
similar resonant behaviour and a comparison with the asymptotic result is given
in figure 6. In these calculations, the non-dimensional trapped-mode frequency is
Ω =

√
4 tanh 4 and the free-surface pressure profile has the form

f (x) =

{
x2

0 − x2, x ∈ FI ,

0, x ∈ FE,
(5.12)

where x0 is chosen to satisfy φ0(x0, 0) = 0 and sgn f (x) = sgn φ0(x, 0) on the internal
free-surface FI so that the existence condition (5.3) is violated. The free-surface
elevation was evaluated at the mid-point between the structures and compared to
the asymptotic amplitude prediction Aφ(0, 0)/2 giving a good agreement. Note that
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Figure 6. Time-domain simulations (——) of the free-surface elevation η/h at the mid-point
between the elements of a passive trapping structure compared to the asymptotic prediction
of the oscillation amplitude (– – –) when a forcing free-surface pressure is applied.

the time-domain simulations involve non-dimensional times t/T and distances x/h

where T =
√

g/h and the non-dimensional frequency is defined as Ω = ω/T .

5.3. Time-domain simulations of transient excitations

5.3.1. Two dimensions

Persistent passive trapped-mode oscillations with constant amplitude can be excited
by applying transient pressure oscillations to the free surface. Here a pressure forcing

P (x, t) = t3 e−t φ0(x, 0)

φ0(0, 0)
(5.13)

is applied on the internal free surface; the factor φ0(0, 0) is chosen to ensure that
the maximum magnitude of the forcing is of order unity. Time-domain results for
the response of the fluid and the structure are shown in figure 7 to illustrate how a
persistent motion of the free surface can occur without the excitation of a significant
motion of the structure. In fact, the structure does move slightly due to the excitation
of a motion resonance at the frequency Ω ≈ 1.28 that may be observed in the discrete
Fourier transform of the structure’s displacement shown in figure 8(b). A small peak
at the trapped-mode frequency (denoted by its non-dimensional value 2.00) is also
apparent implying that a small force is exerted on the structure by the passive
trapped mode. However, this is to be expected because the discretized structure is an
approximation to the passive trapping structure and so the trapped mode is actually
a complex resonance with very small decay constant. The discrete Fourier transform
of the free-surface elevation at the mid-point shown in figure 8(a) has a dominant
peak at the trapped-mode frequency. It should be noted that other methods can be
used to excite passive trapped modes, for example if an initial free-surface elevation
is specified on the internal free surface that is non-zero and not orthogonal to the
trapped mode then a persistent fluid oscillation will occur.

If the pressure profile f (x) in (5.7) is chosen according to (5.4) and (5.5) so that the
existence condition is satisfied then the passive trapped mode is not excited. This is
demonstrated here in a time-domain simulation involving the same passive trapping
structure as the previous simulations and with a free-surface pressure forcing of the
form

P (x, t) =
x2 + f0

ω0

sin(ω0t), (5.14)

where f0 was computed numerically according to (5.5) with f2 = 1.
The results of this simulation are shown in figure 9 and it is clear that no resonant

growth in the free-surface oscillation occurs due to this pressure forcing. The free
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Figure 7. Displacements η/h of the mid-point of the free-surface (——–) and Z/h of the
structure ( – – – ) due to a transient pressure forcing.
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Figure 8. Discrete Fourier transforms of the displacements (a) η/h of the mid-point of the
free surface and (b) Z/h of the structure, both of which are plotted in figure 7. Here |un| is
N−1/2 times the amplitude of the Fourier component with index n, where N is the number of
samples in the signal.
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Figure 9. Displacement η/h of the mid-point of the free surface (——–) and Z/h of the
structure (– – –) due to the oscillatory pressure forcing (5.14).

surface does, however, oscillate at the frequency ω0 due to the time-dependence of the
oscillatory forcing (5.14) but the structure also undergoes appreciable oscillations at
this frequency. Although the structure’s oscillations of frequency ω0 are smaller than
those of the free surface, as can be seen from the Fourier transforms in figure 10,
the two oscillations are of the same order of magnitude. In contrast to this, when the
passive trapped mode is excited the motion of the structure at the frequency ω0 is
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Figure 10. Discrete Fourier transforms of the displacements (a) η/h of the mid-point of the
free surface and (b) Z/h of the structure, as shown in figure 9.
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Figure 11. Displacements η/h of the mid-point r =0 of the free surface (——–) and Z/h of
the passive trapping structure (– – –) due to a transient pressure forcing in three dimensions.

small relative to the oscillations of the surrounding fluid. Thus, the frequency-domain
analysis of the excitation of the passive trapped modes in § 5.1 is validated numerically
in the time domain.

5.3.2. Three dimensions

To demonstrate excitation in three dimensions, a passive trapping structure was
constructed from the three-dimensional finite-depth stream function (4.14) with the
wavenumber kh = 1.0 and the stream-surface constant δ =2.0. A transient pressure
forcing of the form (5.13) (with x replaced by r) was applied to the internal free
surface and the resulting motion of the mid-point of the internal free surface and
of the structure are illustrated in figure 11. After the initial transient has decayed a
persistent oscillation of the free surface accompanied by a small oscillatory motion
of the structure is observed. A discrete Fourier transform of the two signals reveals
that a motion resonance of non-dimensional frequency Ω = 0.46 is excited in addition
to the passive trapped mode of frequency Ω =

√
1.0 tanh 1.0 ≈ 0.87. This resonance

is observed as the only significant peak frequency in the Fourier transform of the
structure’s motion (figure 12) and as a minor peak in the transform of the free-
surface oscillation at a frequency lower than the passive trapped-mode frequency.
The persistent oscillation of the free surface occurs at the trapped-mode frequency
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Figure 12. Discrete Fourier transforms of the displacements (a) η/h of the mid-point of the
free surface and (b) Z/h of the structure, as shown in figure 11.

which confirms the existence of a passive trapped mode in an axisymmetric three-
dimensional problem.

Appendix A. The frequency-domain equation of motion
In the frequency-domain equation of motion (2.5), the potential φ may be

decomposed in terms of a scattering potential φS and a radiation potential φR

so that

φ(x, z, ω) = φS (x, z, ω) + v(ω)φR(x, z, ω). (A 1)

It is known that (Mei, Stiassnie & Yue 2005, § 8.12.2)

φR(x, z, ω) ∼ Ω(x, z) �= 0 as ω → ∞ (A 2)

and thus by the convolution theorem, the inverse Fourier transform of (A 1) yields

Φ(x, z, t) = ΦS (x, z, t) +

∫ t

0

Ẋ(τ )ΓR(x, z, t − τ ) dτ + Ẋ(t)Ω(x, z), (A 3)

where ΦS is the time-domain scattering potential and ΓR is the inverse Fourier
transform of φR − Ω . It follows that

Φ(x, z, 0+) = ΦS (x, z, 0) + Ẋ(t)Ω(x, z), (A 4)

so that the equation of motion in the frequency domain can be written as

[ρgW + κ − ω2{M + a(ω) + i(b(ω) + γ )/ω}]v(ω)

= −iω[X(ω) + ρ

∫
Γ

ΦS (x, z, 0) nz dS + (M + a(∞))Ż(0)] − (ρgW + κ)Z(0), (A 5)

where the exciting force

X(ω) = iωρ

∫
Γ

φS (x, z, ω) nz dS (A 6)
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and the added mass and damping coefficients, respectively a(ω) and b(ω), are defined
by

a(ω) + ib(ω)/ω = ρ

∫
Γ

φR(x, z, ω) nz dS. (A 7)

The coefficient

a(∞) = ρ

∫
Γ

Ω(x, z) nz dS (A 8)

may be formally identified with the added mass in the limit of infinite frequency (Mei
et al. 2005, § 8.12); the term in a(∞) is mistakenly omitted from the corresponding
equation in McIver & McIver (2006, equation (1)).

Appendix B. Asymptotic analysis of the two-dimensional potential
In this appendix it is shown that the potential given in (4.1) has no far-field dipole

coefficient. In terms of polar coordinates defined by

x = R sin θ and z = −R cos θ, (B 1)

so that θ is measured from the downward vertical, then

x − ξ

(x − ξ )2 + z2
=

R sin θ − ξ

R2 − 2ξR sin θ + ξ 2
=

1

ξ

[
ξ sin θ

R
+ O

(
ξ 2/R2

)]
as R/ξ → ∞

(B 2)

and hence

ξ

[
x − ξ

(x − ξ )2 + z2
− x + ξ

(x + ξ )2 + z2

]
= O

(
ξ 2/R2

)
as R/ξ → ∞. (B 3)

The integral term∫ ∞

0

euz sin u(x − ξ )

u − K
du = − Im

∫ ∞

0

e−iu(x−ξ+iz)

u − K
du = − Im

∫ ∞

0

e−iK(x−ξ+iz)t

t − 1
dt (B 4)

and the asymptotics of the last integral as R → ∞ are discussed in Appendix A of
Motygin & McIver (2003). In particular, it follows from (A 6) of that paper that as
KR → ∞:∫ ∞

0

euz sin u(x − ξ )

u − K
du = −π sgn x cos K(x − ξ ) eKz −sin θ

KR
+ O((KR)−2), (B 5)

and thus∫ ∞

0

euz sin u(x − ξ ) − sin u(x + ξ )

u − K
du = −2π sgn x sinKx sinKξ eKz + O((KR)−2)

= O((KR)−2) as KR → ∞, (B 6)

because Kξ = nπ with n ∈ �+. From the above results it follows that the potential
given in (4.1) is O((KR)−2) as KR → ∞ and hence has no dipole in its far-field
expansion.

Appendix C. Verification of a condition for zero force
Here it is shown that the potential φ0 defined in (4.3) satisfies the condition

(3.10) which, for two-dimensional motions in finite-depth water, is necessary for the
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hydrodynamic force on the structure to be zero. First of all, it can be noted that

φ0(x, z) = φ1(x − ξ, z) − φ1(x + ξ, z) (C 1)

where φ1(x, z) is a horizontal dipole singular at the origin. Further,

φ1(x, z) =
∂

∂x
G0(x, z), (C 2)

where G0 denotes the real part of the wave source in the free surface discussed in
Appendix B.2 of Linton & McIver (2001), and, in particular,

G0(x, −h) =
π cosh kh sin k|x|

khN2
0

+ R(x), (C 3)

where

N2
0 =

1

2

(
1 +

sinh 2kh

2kh

)
and R(x) → 0 as |x| → ∞. Thus∫ ∞

−∞
φ0(x, −h) dx = lim

X→∞

∫ X

−X

(
∂

∂x
G0(x − ξ, −h) − ∂

∂x
G0(x + ξ, −h)

)
dx

= lim
X→∞

[
G0(x − ξ, −h) − G0(x + ξ, −h)

]X

−X

=
π cosh kh

khN2
0

lim
X→∞

[
sin k|X − ξ | − sin k|X + ξ |

]
. (C 4)

For sufficiently large |X|

sin k|X − ξ | − sin k|X + ξ | = sgn X [sin k(X − ξ ) − sin k(X + ξ )]

= −2 sgn X cos kX sin kξ = 0 (C 5)

as kξ = nπ, n ∈ �+, and hence (3.10) is satisfied.

Appendix D. Asymptotic analysis of the three-dimensional potential
In this appendix it is shown that the ring potential given in (4.7) and (4.8) has no

far-field dipole coefficient. Any vertically axisymmetric potential φ that is wave free
at infinity has, on r =0, φ = D/z2 +O(z−2) as z → −∞ and so the absence of a dipole
in the far field may be confirmed, without loss of generality, by taking r = 0 in the
trapped-mode potential φ0 and showing that φ0 = o(z−2) as z → −∞.

When evaluated on r = 0, the ring-dipole potential contains the integral

I =

∫ ∞

0

(t cos tz + K sin tz)K1(ct)
t2

t2 + K2
dt (D 1)

(and a smaller exponentially decaying term which may be neglected in this analysis)
and the aim here is to show that I = o(z−2) as z → −∞.

We can write

I = I1 + KI2, (D 2)

where

I1 =

∫ ∞

0

cos(zt)fc(t) dt, I2 =

∫ ∞

0

sin(zt)fs(t) dt (D 3)
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and

fc(t) =
t3

t2 + K2
K1(ct), fs(t) =

t2

t2 + K2
K1(ct). (D 4)

Integration by parts twice gives

I1 =

[
sin zt

z
fc(t)

]∞

0

−
∫ ∞

0

sin zt

z
f ′

c (t) dt

= −1

z

(
−

[
cos zt

z
f ′

c (t)

]∞

0

+

∫ ∞

0

cos zt

z
f ′′

c (t) dt

)
, (D 5)

where, from the asymptotic forms of the modified Bessel function of the second kind,
it is straightforward to verify that

lim
t→0

f ′
c (t) = lim

t→∞
f ′

c (t) = 0, (D 6)

f ′′
c (t) → 1

cK2
as t → 0, (D 7)

and that f ′′(t) is exponentially small as t → ∞. Thus, f ′′
c (t) is absolutely integrable

and by the Riemann–Lebesgue lemma∫ ∞

0

cos zt f ′′
c (t) dt = o(1) as z → ∞ (D 8)

so that I1 = o(z−2) as z → −∞.
Formal integration by parts twice yields

I2 =

[
−cos zt

z
fs(t)

]∞

0

+

∫ ∞

0

cos zt

z
f ′

s (t) dt, (D 9)

but f ′
s (0) �= 0 and so an alternative approach must be taken. In this alternative, we

can write

I2 =
1

c

∫ ∞

0

t sin zt

t2 + K2
dt +

∫ ∞

0

sin zt fs2(t) dt (D 10)

where the first integral is denoted I21, the second I22 and the integrand in I22 is

fs2(t) =
t2(K1(ct) − 1/ct)

t2 + K2
. (D 11)

A straightforward contour integration yields I21 = −π eKz /2c for z < 0 so that, in
particular, I21 = o(z−2) as z → −∞. The integral I22 is estimated through integration
by parts and, in a similar way to I1, it is found that

I22 = − 1

z2

∫ ∞

0

sin zt f ′′
s2(t) dt. (D 12)

The term f ′′
s2(t) is absolutely integrable and so by the Riemann–Lebesgue lemma

I22 = o(z−2) as z → −∞. Combining all of the above gives I = o(z−2) as z → ∞ and
hence there is no dipole in the far-field expansion.
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